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Abstract 

In this technical note, a model describing the evolution of the hospitalisation wave is described. The 

model is based on a time series approach. The log-transformed time series of the number of events is 

assumed to follow a first order autoregressive process with piecewise linear drift at arbitrary points 

driven by a cyclo-stationary Gaussian noise process. 

In this note we introduce the model, the parameter identification as well as the model choice. The 

model choice can be deducted through a linearization of the classical SIR-equations around the 

inflexion point of the solution path of the removed compartment. 

1 Introduction 

We consider a compartmental model consisting of susceptibles �̃� initially set to the Belgian population 

of 11.46 million. The model only considers a subset of the population at risk w.r.t becoming 

hospitalised which is denoted by 𝑆. With a primary focus on hospitalisations, we consider the 

compartments of hospitalised patients on a regular ward 𝐼𝐻 and critical care 𝐼𝐼𝐶𝑈 patients such that 

the union of both consist of the total hospitalised compartment. Finally, we consider the Removed 

compartment 𝑅 consisting of both discharged as well as recovered patients. 

Compartmental models are the most frequently used type of dynamical system to mathematically 

model a disease spread [1]-[2]. Within the Belgian modelling consortium different types of these 

models are used with different characteristics. One can vary in these models the level of detail to 

increase the number of compartments as well as to allow age stratification see the UNamur model [3] 

or regional clustering of the UGent model [4] and UHasselt model [5]. Another alternative approach is 

through a meta-population model as developed at UHasselt [6]. These groups together with VUB form 

the Belgian modelling consortium and are partners of the FWO RESTORE1 project. 

The aphorism of George Box “All models are wrong but some are useful” implies that models are an 

abstraction of reality which describes a part of the measured reality such that it is interesting how 

consistent the models are to explore and understand possible differences. 

2 Model description 

Consider log(𝐼𝑥(𝑡)) the natural logarithm of the number of patients at time instant 𝑡 where 𝑥 ∈

{𝐻, 𝐼𝐶𝑈} denoting either ICU patients or non-ICU hospitalised patients. In this section, we consider the 

 
1 RESTORE: REalistic forecaSTing, cOntrol and. pREparedness for coming COVID-19 waves. UAntwerpen, UGent, 
UHasselt, UZ. Brussel 
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complete compartment of hospitalised patients 𝐼(𝑡). In the absence of noise, the mathematical model 

used is given by: 

log(𝐼(𝑡)) = 𝑎 log(𝐼(𝑡 − 1)) + 𝑓(𝑡|𝜃) 

where 𝑎 indicates the autoregressive parameter while 𝑓(𝑡|𝜃) is a parametrised drift term. We consider 

two drift models: polynomial versus a piecewise linear function. The choice between both together 

with the degree of the polynomial as well as the number of knot points is selected by the Akaike’s 

Information Criterion (AIC) [7]. 

To allow stochastic fluctuations due to the measured number of patients, the model equation is 

extended to a first order autoregressive process with drift driven by a cyclo-stationary Gaussian noise 

process [8,9] leading to: 

log(𝐼(𝑡)) = 𝑎 log(𝐼(𝑡 − 1)) + 𝑓(𝑡|𝜃) + 𝜂(𝑡) 

with 𝜂(𝑡) = 𝑧(𝑡) + 𝐴 cos(𝜔𝑡 + 𝜙) such that 𝜙 ∼ 𝑈([0,2𝜋[) a random phase drawn from a uniform 

distribution over the phases of the unit circle, 𝜔 =
2𝜋

7
days−1 the angular frequency inducing a 

week(end) effect and 𝑧(𝑡) ∼ 𝑁(0, 𝜎2) an identically and independently distributed Gaussian noise 

process with zero-mean and variance 𝜎2. The model is assumed discrete time daily sampled 𝑡 ∈

ℕ where 𝑡 = 0 is identified to March 1st. 

This eventually leads to the following discrete time dynamical system: 

{
 
 

 
 𝑆(𝑡) = exp(−𝛽𝑡∫ 𝐼(𝑠)𝑑𝑠

𝑡

0

)             

log(𝐼(𝑡)) = 𝑎 log(𝐼(𝑡 − 1)) + 𝑓(𝑡|𝜃) + 𝜂(𝑡)

𝑅(𝑡) = 𝛾𝑡∫ 𝐼(𝑠)𝑑𝑠
𝑡

0

                              

 

Note that the parameters of the linear drift term and the parameters 𝛽𝑡 , 𝛾𝑡 are nonlinearly coupled. 

The parameters 𝛽𝑡 , 𝛾𝑡 are constant within the duration intervals of the linear drift component. 

3 Model deduction from the SIR-equations 

The goal is to transform the classical SIR-equations into a description identifiable from a time series 

perspective. The representation should be accurate enough around the inflexion point of the removed 

compartment in order to describe the peak value of the number of infected appropriately. 

The analysis is based on the SIR equations: 

𝑑

𝑑𝑡
𝑆(𝑡) = −𝛽𝐼(𝑡)𝑆(𝑡) 

𝑑

𝑑𝑡
𝐼(𝑡) = 𝛽𝐼(𝑡)𝑆(𝑡) − 𝛾𝐼(𝑡) 

𝑑

𝑑𝑡
𝑅(𝑡) = 𝛾𝐼(𝑡) 
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We start by replacing the first equation by the ratio of equation 3 and equation 1 leading to: 

𝑑𝑆(𝑡)

𝑑𝑅(𝑡)
= −

𝛽

𝛾
𝑆(𝑡) 

𝑑

𝑑𝑡
𝐼(𝑡) = 𝛽𝐼(𝑡)𝑆(𝑡) − 𝛾𝐼(𝑡) 

𝑑

𝑑𝑡
𝑅(𝑡) = 𝛾𝐼(𝑡) 

This allows an implicit solution for the first equation 

𝑆(𝑡) = exp(−
𝛽

𝛾
𝑅(𝑡)) 

𝑑

𝑑𝑡
𝐼(𝑡) = 𝛽𝐼(𝑡)𝑆(𝑡) − 𝛾𝐼(𝑡) 

𝑑

𝑑𝑡
𝑅(𝑡) = 𝛾𝐼(𝑡) 

where we used that 𝑅(0) = 0 and 𝑆(0) = 1. Next we replace the second equation by the ratio of 

equation two and three: 

𝑆(𝑡) = exp(−
𝛽

𝛾
𝑅(𝑡)) 

𝑑𝐼(𝑡)

𝑑𝑅(𝑡)
=
𝛽

𝛾
𝑆(𝑡) − 1 =

𝛽

𝛾
exp(−

𝛽

𝛾
𝑅(𝑡)) − 1 

𝑑

𝑑𝑡
𝑅(𝑡) = 𝛾𝐼(𝑡) 

Also the second equation can be integrated as a function of 𝑅(𝑡) leading to the system of equations: 

𝑆(𝑡) = exp(−
𝛽

𝛾
𝑅(𝑡)) 

𝐼(𝑡) = 1 + 𝐼(0) − exp(−
𝛽

𝛾
𝑅(𝑡)) − 𝑅(𝑡) 

𝑑

𝑑𝑡
𝑅(𝑡) = 𝛾𝐼(𝑡) 

As a result all compartments are written implicitly through 𝑅(𝑡) as 

𝑆(𝑡) = exp (−
𝛽

𝛾
𝑅(𝑡)) 

𝐼(𝑡) = 1 + 𝐼(0) − exp (−
𝛽

𝛾
𝑅(𝑡)) − 𝑅(𝑡) 

𝑅(𝑡) = 𝛾(𝑡 + 𝑡𝐼(0)) − 𝛾∫ exp(−
𝛽

𝛾
𝑅(𝑠)) + 𝑅(𝑠)𝑑𝑠

𝑡

0

 

We look at the final equation only which we can study as a second order differential equation: 
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𝑑2

𝑑𝑡2
𝑅(𝑡) = 𝛾

𝑑

𝑑𝑡
𝐼(𝑡) = 𝛽 exp(−

𝛽

𝛾
𝑅(𝑡))

𝑑

𝑑𝑡
𝑅(𝑡) − 𝛾

𝑑

𝑑𝑡
𝑅(𝑡)  

Now, we linearize the differential equation around its point of inflexion 𝑡0 – Note that in the original 

work of Kermack-McKendrick an approximation of a similar type was performed but around the start 

of the pandemic which reduces the solutions to logistic growth models -which implies 

0 =  𝛽 exp(−
𝛽

𝛾
𝑅(𝑡0)) − 𝛾 ⟺ 𝑅(𝑡0) =

𝛾

𝛽
log (

𝛽

𝛾
) 

Let us consider a first order Taylor approximation for exp(−
𝛽

𝛾
𝑅(𝑡)) around 𝑡0: 

exp(−
𝛽

𝛾
𝑅(𝑡)) ≈ exp(−

𝛽

𝛾
𝑅(𝑡0)) −

𝛽

𝛾
exp(−

𝛽

𝛾
𝑅(𝑡0)) �̇�(𝑡0)(𝑡 − 𝑡0) 

=
𝛾

𝛽
− �̇�(𝑡0)(𝑡 − 𝑡0) 

This simplifies the equation to: 

𝑑2

𝑑𝑡2
𝑅(𝑡) = −𝛽�̇�(𝑡0)(𝑡 − 𝑡0)

𝑑

𝑑𝑡
𝑅(𝑡)  

Using the substitution 𝑢 =
𝑑

𝑑𝑡
𝑅(𝑡)  we find: 

𝑑

𝑑𝑡
𝑢 = −𝛽�̇�(𝑡0)(𝑡 − 𝑡0)𝑢(𝑡) 

leading to 

𝑢(𝑡) = 𝑢(𝑡0) exp (−
𝛽

2
�̇�(𝑡0)(𝑡 − 𝑡0)

2) 

As a result we obtain an approximate solution for 𝐼(𝑡) which immediately solves the remaining signals: 

𝑆(𝑡) = exp(−𝛽∫ 𝐼(𝑠)𝑑𝑠
𝑡

0

) 

𝐼(𝑡) = 𝐼(𝑡0) exp (−
𝛽𝛾

2
𝐼(𝑡0)(𝑡 − 𝑡0)

2) 

𝑅(𝑡) = 𝛾∫ 𝐼(𝑠)𝑑𝑠
𝑡

0

 

To compare the analytical approximation to the numerical solutions of the SIR model, we apply a 

simulation example which realistically exhibits the current hospitalisation flow of the Covid19-

pandemic. We use the following parameters 𝑅0 = 3.2617, 𝛾 = 0.1194, 𝛽 = 0.3894, 𝑁 = 𝑆(0) =

17 496, 𝑅(0) = 0 and 𝐼(0) = 2. This gives the peak moment 𝑡0 = 38 days. The right skew behaviour 

is not supported by the symmetric solution but is corrected for by the piecewise linear drift. 
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Figure 1: Numerical solution of the SIR equations confronted with the approximate solution 

4 Numerical methods and parameter identification 

4.1 Parameter identification of the time series model 

The time series model  

log(𝐼(𝑡)) = 𝑎 log(𝐼(𝑡 − 1)) + 𝑓(𝑡|𝜃) + 𝜂(𝑡) 

is linear in its parameters and can be identified by an iterated Weighted Least Squares estimation as a 

two-step method. We start by the Least Squares estimate followed by characterizing the residuals. The 

Fourier transform of the residuals at frequency 𝜔 =
1

7
𝑑𝑎𝑦𝑠−1 serves as an estimate for 

𝐴 cos(𝜔𝑡 + 𝜙) = (
2

√𝑁
𝑅𝑒(𝑃(𝜔)) cos(𝜔𝑡) −

2

√𝑁
𝐼𝑚(𝑃(𝜔)) sin(𝜔𝑡)) 

with 𝑃(𝜔) the Fourier coefficient of the residuals at frequency 𝜔. As a result, the variable 
2

√𝑁
𝑅𝑒(𝑃(𝜔)) cos(𝜔𝑡) −

2

√𝑁
𝐼𝑚(𝑃(𝜔)) sin(𝜔𝑡) is used as a non-parametric noise model [10,11] to 

correct the least squares estimate for the weekend effect. 

4.2 Identification of the knot points 

The knot points are the time instants when presumable a change in behaviour is expected for the drift 

term. The drift term consists of a slope parameter which exhibits how fast the pandemic is expanding 

or shrinking. Indeed exp(𝑓(𝑡|𝜃)) is a measure for the deterministic trend of relative daily growth of 

the observed cases. The user can introduce knot points manually corresponding to intervention points 

due to imposed measures. The algorithm performs a grid search around the knot point introduced in 
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order to make a compromise between data-fit and piecewise continuity of 𝑓(𝑡|𝜃). This allows the data 

to take into account that measures imposed do not have an instantaneous effect in the observed data. 

On top of that, the algorithm will only use the knot point introduced if it lowers the AIC-statistic w.r.t. 

the situation without the knot point. As a result, the knot point which increases the number of 

parameters of the model must significantly improve the data fit to avoid overfitting. 

4.3  Forecast 

The drift fit gives an instantaneous idea of the deterministic relative increase of the number of patients 

of interest through exp(𝑓(𝑡|𝜃)) leading to its immediate doubling period computed as log(2) /𝑓(𝑡|𝜃). 

This leads to an effective reproduction number 𝑅𝑒 = exp(𝜏𝑓(𝑡|𝜃)) with 𝜏 the mean generation 

infection time [12] which assumes that the population is homogeneously mixing.  

The forecast is computed by solving the SIR equations numerically with a standard 4/5 Runge-Kutta 

numerical scheme w.r.t the immediate population at risk consisting of 𝑆(0) = 𝑁 × 𝑝𝑒 × 𝑝𝑝𝑟 × (1 −

𝑝𝑖) where 𝑁 is the total population size, 𝑝𝑒 is the probability of the event (for instance hospitalisation) 

given a positive test, 𝑝𝑝𝑟 is the probability of infection (measured by for instance the positivity rate) 

and 𝑝𝑖  the fraction of immunity. Since 𝑅𝑒 is estimated previously the effective 𝛽𝑒 , 𝛾𝑒 is estimated by 

considering a validation window 𝑇 (for instance 7 days). The forecast is tuned such that 𝛽𝑒 with 𝛾𝑒 =

𝛽𝑒/𝑅𝑒 can be estimated to minimize the prediction error in the validation interval. Note that the 

forecast does not assume future interventions and describes a fading pandemic under the currently 

observed situation. 

4.4 Uncertainty analysis 

The confidence interval of the forecast is measured by bootstrapping. We bootstrap the data as 

follows: 

log(𝐼𝑏(𝑡)) = �̂� log(𝐼𝑏(𝑡 − 1)) + 𝑓(𝑡|𝜃) + 𝜂𝑏(𝑡) 

where 𝜂𝑏(𝑡) = (
2

√𝑁
𝑅𝑒(𝑃(𝜔)) cos(𝜔𝑡) −

2

√𝑁
𝐼𝑚(𝑃(𝜔)) sin(𝜔𝑡)) + 𝜖(𝑡) where 𝜖(𝑡) is Gaussian white 

noise with zero-mean and variance estimated from the residuals. As a result, each bootstrapped time 

series allows re-estimation of the parameters including 𝑅𝑒, 𝛽𝑒, 𝛾𝑒. As a result for each forecasted time 

instant, the various solution paths are considered as the bootstrapped uncertainty assessment leading 

to the bootstrapped confidence interval of the forecast. 

5 Model realisations 

5.1 Early pandemic 

On March 14 the hospitalisations in Belgium started although the infections were in an exponential 

growth phase. For the university hospital, a projection was made for a potential peak moment as well 

as a peak load to assess hospital sustainability. The time series model was used of the measured 

infections since March 1st and a proxy statistic of the Italian hospitalisation rates leading to 𝑝ℎ = 0.35 

and 𝑝𝑖𝑐𝑢 = 0.07 for the probability of hospital and ICU-admission given a positive test. The positivity 

rate was around 11%. 
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Figure 2: Linear drift estimation of the early pandemic in Belgium for the number of positive tests (trend line – red dashed 
line, blue crosses – unused unstable observations, red crosses – used stable observations) 

In Figure 2 the estimate of the log-linear drift term applied to the observations in the time window 

March 6th up to March 14th. The first observations are in transient regime converging to a steady state 

pattern due to the initial conditions of the dynamical system. The model estimated the doubling period 

to 2.33 days which is nearly half shorter than the incubation time leading to a lock down to slowing 

the virus spread down. 

 

Figure 3: Forecast of the hospitalisation wave modelled on March 14th and confronted with the observations up to May 25th 
– crosses (observations), solid line (model) where all hospitalisations (blue) and ICU (red) 

The model estimated the peak moment approximately 8 days later than observed. Moreover the 

model gives a symmetrical projection due to the model description used. The model assumes the daily 
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log-growth to proceed along the linear trajectory without changes. The maximum hospitalisation load 

was fairly well estimated which implies that the proxy probabilities used from the Italian statistics 

compares to the Belgian situation. As a result this suggests that the virus strikes in a similar way than 

in Italy. We did not see a hospitalisation wave which was too high to exceed sustainability due to the 

earlier lock-down and the resulting linear drift. 

5.2 Shrinking pandemic 

While the time series become longer the model could re-calibrate where needed to obtain a better 

model-fit. The model’s trajectory was given a first knot point on April 8th. This is normal because the 

model description is a linearization of the system of nonlinear differential equations governing the 

pandemic such that a knot point is needed at the pandemic’s stationary point of the hospitalisation 

wave to compensate for the right skewed behaviour. 

 

Figure 4: Top: Linear drift with oscillating weekend effect with a knot point around April 8th – Bottom hospitalisation wave 
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5.3 Early warnings of a potential summer increase 

In the period of June various exit strategies where introduced up to July 1st. On June 24th the model 

gave the first warning of a potential hospitalisation increase. The model anticipated the growing 

number of hospitalisations for July 18th. The model was targeting an increase of the last two weeks 

preceding June 24th. Particularly the minimum and maximum daily growth in these weeks were rising 

in this period which was a violation of the time series stationarity.  

 

Figure 5: Model of June 24th revealing a potential re-growing epidemic by July 18th. 

The model stayed on this course up to the July 16th when the first increase was reported. The model 

was targeting the relative growth which was increasing although it remained under the critical value 

of 1. The increasing trend of the growth was correctly followed although the absolute number kept 

going down. 

 

Figure 6: Model of June 24th revealing a potential re-growing epidemic by July 18th. 
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The increase in hospitalisations occurred on July 14th. Although the model could identify an increase in 

the relative daily growth, its forecast was quite negative. It projected a doubling period of 19 days. To 

reduce the risk, measures were installed end of July which finally lead to an outcome where the 

hospitalisations doubled during one cycle from 12th July with 130 hospitalised patients to 17th august 

341 patients. This gives a rough estimate of a doubling period of 25.87 days as observed. 

 

Figure 7: Growth plot on August 24th. 

Finally the model re-calibrated when the measures imposed kicked in and gave a stable solution path 

for the immediate future. The model identified the change in stationarity altering the increasing trend 

to a decreasing trend. It is difficult to assess the validity of the negative projection but the model’s 

negative forecast was shared by the other modelling strategies in the Belgian consortium. Nonetheless, 

in August evidence presented itself that the model was rather negative due to the hospitalisation 

probabilities used. The probabilities used for 𝑝ℎ were still the ones regulating the March wave. 

However the increase of the summer period was due to the younger age groups significantly reducing 

the hospitalisation probability. Since the model does not take future behavioural changes into account, 

it cannot compensate at the time of the forecast for future knot points. As a result, the model is 

primarily equipped for short time projections. During the March wave the long term projection was 

fairly accurate since the Italian proxy gave an idea of the Lockdown effect which was by the proxy taken 

into account. 

5.4 September period 

The current month shows hospitalisations which are daily rising. The doubling period on September 

17th is estimated to 15.2503 days with a 𝑅𝑒 = 1.1994. This is a worrying situation as the linear drift 

term is expect to continue its increasing slope. As a result, one expects on September 27th to observe 

a doubling time of 8.9104 days leading to a 𝑅𝑒 = 1.3650. This implies that the doubling period 

becomes 41.57% shorter over 10 days. This is consistent with the exponential growth pattern whose 

rate changes exponentially as well.  

The forecast estimates for October a hospitalisation load 1126 occupied beds with a 95% uncertainty 

interval of [924, 1342]. The peak is estimated by early November with an estimate of 6777 occupied 

beds within a large prediction uncertainty of [4215,9573]. Besides the large prediction uncertainty, 

efforts must be made to counter the increase observed. Such efforts have been shown to be effective 

in decreasing the summer growth. 
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Figure 8: Forecast determined by the model based on the Hospitalisation growth pattern observed since August 28th 

6 Conclusions 

In this technical report a SIR-based time series approach is described which is computationally light 

and allows black-box modelling of an infection wave. It is data-driven and does not require a long time 

series to obtain insight in the potential solution path of the infection wave. Moreover it is capable of 

adapting to incoming changes of the data-properties by the introduction of knot points.  

Forecast models for an infection wave are used to assess the impact of current observations in order 

to intervene and return to a user-defined path of preference since every disease spread is driven by 

human behaviour. Thus, models can advice human behaviour to maximally suppress diseases from 

spreading. 
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