r-square intro

a few basic building blocks
Author

Wilfried Cools & Lara Stas

Published

November 22, 2024

SQUARE consultants
square.research.vub.be

Compiled on R 4.4.1

What-Why-Who

This site aims to introduce researchers to the tidyverse ecosystem in R.

Our target audience is primarily the research community of the VUB / UZ Brussel, particularly those who have some basic experience in R and want to know more.

We invite you to help improve this document by sending us feedback: square@vub.be

Advanced R course: the tidyverse

  • Advanced: experience required to keep up
    • an r primer is given as context and can give you a quick refresher
  • Not advanced: it is still about simple stuff
    • data manipulation
    • data visualization
    • no statistics
  • You want advanced ?
    • should not be necessary for you
    • Wickham, H. (2019). Advanced R, Second Edition. CRC Press.
    • chapters
      • functional programming
      • object oriented programming
      • meta programming (expressions, quasiquotation, evaluation, …)

First Tidyverse Steps

  • Data manipulation and visualization
    • simple but generally usable
    • important part of most analyses
    • often neglected in statistics courses
  • Our focus: tidyverse
    • a set of R packages (~ functions)
    • bridges the gap between raw data and modeling

tidyverse: Why it exists

  • R; a flexible open source statistical programming tool (2000)
    • flexible: a lot is possible, in different ways
    • open source: many contributors writing code their own way
    • users have to adapt to each package / function
  • Commit to shared rules (not reduce R flexibility)
    • contract with user → consistent input (tidy data)
    • contract with developer → consistent specification
      • predictable function names
      • intuitive/sensible arguments and defaults
    • contract with developer → consistent output
      • predictable (constancy of data type by default)
      • reusable
library(tidyverse)
read.table(file, header = FALSE, sep = "", quote = "\"'",
           dec = ".", numerals = c("allow.loss", "warn.loss", "no.loss"),
           row.names, col.names, as.is = !stringsAsFactors, tryLogical = TRUE,
           na.strings = "NA", colClasses = NA, nrows = -1,
           skip = 0, check.names = TRUE, fill = !blank.lines.skip,
           strip.white = FALSE, blank.lines.skip = TRUE,
           comment.char = "#",
           allowEscapes = FALSE, flush = FALSE,
           stringsAsFactors = FALSE,
           fileEncoding = "", encoding = "unknown", text, skipNul = FALSE)
read_table(
  file,
  col_names = TRUE,
  col_types = NULL,
  locale = default_locale(),
  na = "NA",
  skip = 0,
  n_max = Inf,
  guess_max = min(n_max, 1000),
  progress = show_progress(),
  comment = "",
  show_col_types = should_show_types(),
  skip_empty_rows = TRUE
)
head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
class(mtcars)
[1] "data.frame"
str(mtcars[,c('mpg','cyl')])
'data.frame':   32 obs. of  2 variables:
 $ mpg: num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl: num  6 6 4 6 8 6 8 4 4 6 ...
str(mtcars[,c('mpg')])
 num [1:32] 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
# str(select(mtcars,'mpg'))
str(mtcars |> select('mpg'))
'data.frame':   32 obs. of  1 variable:
 $ mpg: num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
str(mtcars |> pull('mpg'))
 num [1:32] 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
  • tidyverse = first successful attempt to make R more consistent
    • earlier attempts failed
    • tidyverse well thought through
    • tidyverse makes sense for most
    • tidyverse supported and promoted by Rstudio
  • Ecosystem emerges, following the tidyverse rules
    • tibble for data representation
    • tidyr for tidying data
    • dplyr for manipulating data frames
    • ggplot for visualizing data
    • stringr for dealing with texts
    • readr for reading in data
    • forcats for dealing with factors
    • purrr for functional programming (advanced)

Find convenient cheat sheets here or directly in RStudio (Help → Cheat Sheets).

Set up tidyverse packages

  • Install the tidyverse package (at least once)
install.packages('tidyverse')
  • Load the tidyverse package (once per R session)
    • the individual packages that are loaded by default are listed
    • conflicts are listed
library(tidyverse)
  • Conflicts result from identical function names
    • resolve conflicts
      • explicit referencing of package with ::
        • e.g., stat::filter( ) or dplyr::filter( )
      • creating new default
        • e.g., select <- dplyr::select
  • Conflicts can be checked for tidyverse
tidyverse_conflicts( )
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
  • tidyverse ecosystem includes
    broom, conflicted, cli, dbplyr, dplyr, dtplyr, forcats, ggplot2, googledrive, googlesheets4, haven, hms, httr, jsonlite, lubridate, magrittr, modelr, pillar, purrr, ragg, readr, readxl, reprex, rlang, rstudioapi, rvest, stringr, tibble, tidyr, xml2, tidyverse.
tidyverse_packages( )

tidy data (input) - where is started

  • Hadley Wickham’s ggplot (now works at RStudio)
    • consistent input, easier to write visualization functions
    • enforce use of ‘tidy’ data
  • Tidy data
    • observations in focus assigned a row, each
    • columns to add properties to these observations (cell values)
    • tabular, possibly disentangled into multiple tables
  • tibble
    • data.frame 2.0
    • do less, complain more

tidy output - it’s extension

  • Max Kuhn’s caret (now works at RStudio) turned into the broom package
    • homogenize statistical output
    • output to potentially serve as input
  • Tidy output
    • one-row model information glance
    • multiple row statistical summary tidy
    • model based extended data augment
  • Output also turned into a tibble

tibbles: the tidyverse data type

  • The tibble package offers the tidyverse data type, a tibble

  • A tibble is a data frame, not necessarily the other way around

  • A data frame is R’s data type for analysis

    • a list of equally sized vectors
      • numeric vector (either double, integer, or complex)
      • factor (ordered, not ordered)
      • boolean vector
      • character
  • A tibble enhances a data frame

    • for convenience and consistency
    • no row-names, must be part of data
    • different default behavior
      • printing, naming, …
      • less forgiving
    • example: print
  • Create tibble with tibble( ) or tribble( ) function

    • notice: class( ) shows both data.frame and tbl_df
    • notice: no row names, all info made explicit as data
    • compare with dataframe
mytibble <- tibble(
  colA = c("a","b","c"),
  colB = c(1:3)
)
(mytibble <- tribble(
  ~colA, ~colB,
  "a",   1,
  "b",   2,
  "c",   3
))
# A tibble: 3 × 2
  colA   colB
  <chr> <dbl>
1 a         1
2 b         2
3 c         3
class(mytibble)
[1] "tbl_df"     "tbl"        "data.frame"
mydf <- data.frame(colA=c('a','b','c'),colB=1:3)
class(mydf)
[1] "data.frame"
  • No need to think much about tibbles
    • a tibble is a data frame
    • tidyverse functions automatically enhance data frames to tibbles

pipes: a convenient way of chaining functions

  • The magrittr package offers the pipe function
    • %>% or |>
    • pushes left hand side as first argument into right hand side
      • eg., object %>% function
    • borrowed from functional programming
  • tidyverse always has as first argument it’s input
    • function(input, …)
    • pipes are convenient to chain functions
      • eg., object %>% function %>% function’ %>% function’’ …
  • Pipes read from left to right
    • most base R use reads inside-out
    • compare
      • mtcars %>% pull(mpg) %>% mean()
      • mean(mtcars$mpg)
    • especially of interest with multiple steps, serves readability
    • example: root sum of squares for two sets of 10, sampled from standard normal
x1 <- rnorm(10); x2 <- rnorm(10)
sqrt(sum((x1-x2)^2))
[1] 6.000135
(x1-x2)^2 %>% sum( ) %>% sqrt( )
[1] 6.000135

Example: tidyverse

  • Create factors for all variables with fewer than 4 distinct values
    • for data.frame mtcars
    • change the elements (mutate)
      • for all variables (across)
        • where variable . < 4 distinct values
        • to factor
    • and show the structure (glimpse)
mtcars %>% 
    mutate(
        across(
            where(~n_distinct(.)<4),
            as.factor)) %>% 
    select(1:4) %>% glimpse
Rows: 32
Columns: 4
$ mpg  <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,…
$ cyl  <fct> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,…
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16…
$ hp   <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180…